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INTERNAL RESONANCES IN WHIRLING STRINGS
INVOLVING LONGITUDINAL DYNAMICS AND MATERIAL

NON-LINEARITIES
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Internal resonance mechanisms between near-commensurate longitudinal and transverse
modes of a taut spatial string are identi"ed and studied using an asymptotic method, and the
in#uence of material non-linearities on the resulting solutions is considered. Geometrical
non-linearities couple longitudinal motions to in-plane and out-of-plane transverse motions,
resulting in resonant and non-resonant interactions between linearly orthogonal string
modes. Past studies have included only transverse modes in the description of string motions
and have predicted periodic, quasi-periodic, and chaotic whirling motions arising from the
geometrical non-linearities. This study considers further the inclusion of longitudinal
motions and a non-linear material law, which are both appropriate for the study of
rubber-like strings. An asymptotic analysis captures the aforementioned whirling motions,
as well as a new class of whirling motions with signi"cant longitudinal content. Periodic,
quasi-periodic, and aperiodic (likely chaotic) responses are included among these motions.
Their existence, hardening}softening characterization, and stability are found to be highly
dependent on the magnitude of the material non-linearities.

( 2000 Academic Press
1. INTRODUCTION

Many studies have examined the non-linear dynamics of spatial strings with linear material
descriptions and non-resonant longitudinal response. Among these are the study by
Narasimha [1], in which a transversely excited model was developed capturing whirling
string motions while correctly accounting for non-resonant longitudinal motions. A later
study by Miles [2] used an asymptotic theory to develop evolution equations governing the
slowly varying modal amplitudes. Using a local bifurcation analysis, the thresholds for
periodic and quasi-periodic whirling were predicted, although the existence of chaotic
motions was not shown until later when Johnson and Bajaj [3] studied the evolution
equations numerically and when Molteno and Tu"llaro [4] and O'Reilly and Holmes [5]
reported experimental observations of torus doubling and chaotic string motions. Global
bifurcation theory was utilized to explain the existence of chaotic attractors numerically by
Bajaj and Johnson [6] and analytically by O'Reilly and Holmes [5] and O'Reilly [7].
However, only qualitative agreement has been documented to date between (weakly)
non-linear theory and experiments of quasi-periodic or chaotic whirling strings. Numerical
simulation of the (strongly) non-linear string by Rubin and Gottlieb [8] revealed that the
onset of persistent periodic whirling and aperiodic response is about 5 times smaller than
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that observed in experiments. Some possible explanations o!ered for this discrepancy
include not consistently modelling aeroelastic drag and boundary dissipation, and not
including non-linear material properties.

Nylons [9] and rubber-like materials, including latex [10], can exhibit stress}strain
behavior in which linear and non-linear e!ects are of equal importance. Nayfeh et al. [10]
examined analytically and experimentally a latex string forced near a transverse natural
frequency, without including material non-linearities in their analytical model. They found
good agreement between their experimental and analytical results for periodic planar and
whirling motions when no parametric excitation of the longitudinal modes occurred, but
found discrepancies in the parametrically excited case that they attributed to the presence of
longitudinal motions. Furthermore, in parameter regimes where their analytical model
predicted modulated motions, they observed only periodic response in their experimental
studies. They did not comment on discrepancies that might be present due to not modelling
non-linear material properties. Leamy and Gottlieb [11] introduced a new modelling
approach for the spatial string, with su$cient generality to include strings composed
of non-linear materials, by employing "nite deformation continuum mechanics and a
non-linear material constitutive law. Analyzing separately transverse and longitudinal
motions using asymptotics, they found that the material non-linearities had a negligible
e!ect on transversely dominated string motions, but in#uenced the degree of non-linearity
and the softening}hardening nature of longitudinally dominated string motions.

In this investigation, internal resonances between longitudinal modes and transverse
modes will be analyzed for a string described by a non-linear material law. The string model
developed in Leamy and Gottlieb [11] is summarized and adapted to study the relevant
internal resonance. A convenient non-dimensionalization is introduced and an approximate
solution procedure is completed by direct application of the multiple scales method on the
three governing partial di!erential equations. The solutions are interpreted for example
strings and the results are used to document periodic, quasi-periodic, and aperiodic (likely
chaotic) responses.

2. NON-LINEAR STRING MODEL

The non-linear string model chosen for this study is that developed recently by Leamy
and Gottlieb [11], which incorporates a non-linear material constitutive law and "nite
deformation continuum mechanics. A cursory description of the model is given below
before proceeding directly to the governing equations.

A pre-tensioned string with length ¸, mass-per-unit length oTAT, and initial tension ¹
0

is
considered to deform in three-dimensional space under the in#uence of general excitation.
As depicted in Figure 1, rectilinear material co-ordinates (x

1
,x

2
, x

3
) are chosen to identify

material points along the string in the tensioned (initial) con"guration, where x
1
is along the

length of the string. An inertial co-ordinate system (z
1
, z

2
, z

3
) with unit vectors (I

1
, I

2
, I

3
) is

de"ned which corresponds to the material co-ordinate system in the tensioned
con"guration. The material co-ordinates are convected with the string's deformation into
a triad of non-orthogonal curvilinear co-ordinates (x1, x2,x3), which are used to
characterize the deformed state of the string. Similarly, unit vectors (i

1
, i

2
, i

3
) along

(x
1
, x

2
,x

3
) in the tensioned con"guration are convected into covariant base vectors (G

1
, G

2
,

G
3
) along (x1,x2, x3) in the deformed con"guration, where it is noted that in general, these

base vectors are no longer mutually orthogonal nor have unit length.
Following a formulation of the strain energy, kinetic energy, and external virtual work,

application of Hamilton's Principle yields the following "eld equations and boundary



Figure 1. Diagram depicting a small element of the string in both the tensioned and the deformed con"guration.
Material co-ordinates (x

1
, x

2
, x

3
) identify a point P

0
in the tensioned con"guration, which is displaced during

deformation to point P and is located in space by the inertial co-ordinates (z
1
(t), z

2
(t), z

3
(t)). After deformation, the

material co-ordinates form a non-orthogonal curvilinear co-ordinate system (x1, x2,x3) with covariant base
vectors (G

1
, G

2
, G

3
).
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conditions:

(ATt11 (d
1m

#u
m,1

))
,1
#oTATFK

m
"oTATuK

m
, (1)

ATt11 (d
1m

#u
m,1

)du
mK

x
1/L

x
1/0

"0, (2)

where a comma denotes di!erentiation with respect to the material co-ordinates, the
repeated subscript signi"es summation, d

ij
represents the Kronecker delta, tij denotes

the second Piola}Kircho! stress tensor representing the stress state per unit area in the
tensioned con"guration referred to the material co-ordinate system, u

m
(x

1
, t) denotes

the displacement "eld, and FK
m

denotes external forces per unit mass. Speci"cally, direct
excitation at x

1
"¸/2, viscous drag, and the gravitational body force appear in FK

m
as

FK
m
"

a
m
P(t)

oTAT
d (x

1
!¸/2)!c

m
u5
m
!b

m
g, (3)

where g denotes the gravitational acceleration, P (t) denotes the forcing, d(x!a) denotes
the Dirac delta generalized function acting at x"a, c

m
denotes viscous damping

coe$cients, and a
m

and b
m

denote direction cosines, of which a
3

and b
3

are chosen to be
zero.

For this study, the string is assumed to be simply supported with boundary conditions

u
m
(0, t)"u

m
(¸, t)"0, m"1, 2, 3, (4)

which satisfy equation (2).
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Following Oden [12] and Meirovitch [13], the constitutive relationship for an isotropic,
viscoelastic (Kelvin}Voigt) material is stated here as

tij"
LW
Lc

ij

#

LC
Lc5

ij

, (5)

where c
ij

denotes a strain tensor, W denotes a general strain energy potential, and
C denotes a quadratic Rayleigh damping function. The string is considered to be perfectly
#exible, or equivalently, the only stress present in the string is the uni-axial stress t11, the
string being unable to support any other stress components. From equation (5), the
perfectly #exible assumption requires that W"W(c

11
) and C"C(c5

11
) only. Thus,

expressing W(c
11

) by its Taylor expansion, the constitutive relationship can be stated as

t11"
¹
0

AT
#Ak1

#C
L
LtBc

11
#k

2
c2
11
#k

3
c3
11
#O(c4

11
), (6)

where ¹
0

is the initial string tension, k
1

is the elastic modulus, and k
2

and k
3

are non-linear
moduli. The Kelvin}Voigt dissipation constant is denoted by C. All material constants
appearing in equation (6) are measured relative to the tensioned con"guration.

To complete the string model, the functional form of the strain c
11

is de"ned. The exact
line element (or Hookean) strain is used such that

c
11
"

JG
11

dx1!dx
1

dx
1

"J(1#u
1,1

)2#u2
2,1

#u2
3,1

!1, (7)

where the scalar product between the covariant base vectors,

G
ij
,G

i
)G

j
"d

ij
#u

i,j
#u

j,i
#u

m,i
u
m,j

, (8)

has been implemented in equation (7).
Substituting equations (3) and equations (6) and (7) into equation (1), noting AT is

independent from x
1

for a homogeneous string, and keeping terms to cubic order in the
displacements, their spatial and their temporal derivatives, the u

1
,u

2
, and u

3
equations

appear in the formulation as

oTuK
1
"

a
1
P

AT
dAx1

!

¸

2B#A
¹
0

AT
#k

1
#C

L
LtBu

1,11
!c

1
oTu5

1
!b

1
oTg

#Ak1#C
L
LtBAu2

1,1
#

1

2
u2
2,1

#

1

2
u2
3,1B

,1

!AAu1,1#
1

2
u2
2,1

#

1

2
u2
3,1BC

L
Lt

u
1,1B

,1

#k
2
(u2

1,1
)
,1
#(k

2
#k

3
)(u3

1,1
)
,1
#k

2
(u

1,1
(u2

2,1
#u2

3,1
))
,1
, (9)

oTuK
2
"

a
2
P

AT
dAx1

!

¸

2B!b
2
oTg#

¹
0

AT
u
2,11

!c
2
oTu5

2
#k

2
(u

2,1
u2
1,1

)
,1

#Au2,1Ak1#C
L
LtBAu1,1

#

1

2
u2
2,1

#

1

2
u2
3,1BB

,1

, (10)
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oTuK
3
"

¹
0

AT
u
3,11

!c
3
oTu5

3
#k

2
(u

3,1
u2
1,1

)
,1

#Au3,1Ak1#C
L
LtBAu1,1#

1

2
u2
2,1

#

1

2
u2
3,1BB

,1

. (11)

Lastly, a convenient non-dimensionalization is introduced followed by an ordering of the
damping and excitation. De"ning the longitudinal and transverse wave speeds (and similar
quantities),

¹
0

oTAT
"s2

2
,

k
1

oT
"s2

1
,

k
2

oT
"a

2
s2
1
,

k
3

oT
"a

3
s2
1
, s2

1
#s2

2
"r( 2s2

2
, (12)

the following non-dimensionalization can be speci"ed:

x
1
"¸x*, t"

t*

X
, u

1
"e¸u*, u

2
"e¸v*, u

3
"e¸w*,

C"e
oT¸2

X
C*, c

1
"e

1

X
c*
1
, c

2
"e

1

X
c*
2
, c

3
"e

1

X
c*
3
,

P"e2oTAT¸2P*, g"e2¸g*, (13)

where it is noted that

H (¸(x*!1
2
))"H (x*!1

2
), d (¸ (x*!1

2
))"

1

¸

d(x*!1
2
).

The small parameter e is not a physical quantity in the system, and is instead used as
a book-marking device. The only requirement associated with the use of this parameter is
that the amplitude of the displacements must be small.

Substituting equation (13) into equations (9)}(11) and retaining terms up O(e2), the system
equations are restated as

X2
L2u
Lt2

"ea
1
PdAx!

1

2B#A
r( 2s2

2
¸2

#eC
L
LtB

L2u
Lx2

!ec
1

Lu

Lt
!eb

1
g

#eA
(r( 2!1)s2

2
¸2

#eC
L
LtB

L
Lx AA

Lu

LxB
2
#

1

2A
Lv

LxB
2
#

1

2A
Lw

LxB
2

B
#ea

2

(r( 2!1)s2
2

¸2

L
Lx AA

Lu

LxB
2

B
#e2a

2

(r( 2!1)s2
2

¸2

L
LxA

Lu

LxAA
Lv

LxB
2
#A

Lw

LxB
2

BB
!e2C

L
LxA

Lu

Lx

L2u
Lx LtB#e2(a

2
#a

3
)
(r( 2!1)s2

2
¸2

L
LxAA

Lu

LxB
3

B, (14)
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X2
L2v
Lt2

"ea
2
PdAx!

1

2B#
s2
2

¸2

L2v
Lx2

!eb
2
g!ec

2

Lv

Lt

#e
L
LxA

Lv

LxA
(r( 2!1)s2

2
¸2

#eC
L
LtBA

Lu

Lx
#e

1

2A
Lv

LxB
2
#e

1

2A
Lw

LxB
2

BB
#e2a

2

(r( 2!1)s2
2

¸2

L
LxA

Lv

LxA
Lu

LxB
2

B, (15)

X2
L2w

Lt2
"

s2
2

¸2

L2w
Lx2

!ec
3

Lw

Lt

#e
L
LxA

Lw

Lx A
(r( 2!1)s2

2
¸2

#eC
L
LtBA

Lu

Lx
#e

1

2A
Lv

LxB
2
#e

1

2 A
Lw

LxB
2

BB
#e2a

2

(r( 2!1)s2
2

¸2

L
LxA

Lw

Lx A
Lu

LxB
2

B, (16)

where the * notation has been dropped.

3. EVOLUTION EQUATIONS

When an internal resonance mechanism exists between transverse and longitudinal
modes of the string, transverse excitation can lead to signi"cant longitudinal motions,
whereby the e!ects of material non-linearities increase in importance. In what follows, full
coupling mechanisms are identi"ed which lead to interactions between certain longitudinal
and transverse modes. After identifying the possible mechanisms, the resonant mechanism
corresponding to coupled cubic terms is studied in further detail.

The midpoint forcing of the string is now de"ned as

P"p cos (Xt), (17)

where the excitation frequency X is considered to be detuned from a system longitudinal or
transverse natural frequency,

X2"j2r( 2
s2
2

¸2
#ep"j2r( 2u2

t
#e(p

1
#ep

2
), (18)

and the ratio parameter r( is considered to be detuned from an integer value,

r( 2"r2#ep
r
. (19)

For example, if j"Nn where N is an integer, then X is near the Nth linear natural frequency
of a longitudinal mode. If j"In/r, where I is an integer, then X is near the Ith transverse
linear natural frequency and, furthermore, if I/r"K is itself an integer, X is also near the
Kth linear natural frequency of a longitudinal mode. In this way, P is likely to directly excite
a single longitudinal mode, a single transverse mode, or both a longitudinal and a
transverse mode. It is also possible for P to indirectly excite integer multiples of these modes
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due to the non-linearities present in equations (14)}(16), so-called super-harmonically
excited modes.

Similar to the frequency, viscoelastic and linear damping are ordered to appear at all
e-orders,

C"C
1
#eC

2
, c

1
"c

11
#ec

12
, c

2
"c

21
#ec

22
, c

3
"c

31
#ec

32
. (20)

An analysis using the multiple scales method directly applied to the governing partial
di!erential equations (14)}(16) is begun next. The analysis is completed to O(e2). First,
separate time scales are introduced at each O(e), along with an ordered expansion for the
displacements u, v, and w as follows:

t"¹
0
#e¹

0
#e2¹

0
#O(e3)"¹

0
#¹

1
#¹

2
#O(e3), (21)

u (x, t)"u
0
(x,¹

0
,¹

1
,¹

2
)#eu

1
(x,¹

0
,¹

1
,¹

2
)#e2u

2
(x,¹

0
,¹

1
,¹

2
)#O(e3), (22)

v (x, t)"v
0
(x,¹

0
,¹

1
,¹

2
)#ev

1
(x,¹

0
,¹

1
,¹

2
)#e2v

2
(x,¹

0
,¹

1
,¹

2
)#O(e3), (23)

w (x, t)"w
0
(x,¹

0
,¹

1
,¹

2
)#ew

1
(x,¹

0
,¹

1
,¹

2
)#e2w

2
(x,¹

0
,¹

1
,¹

2
)#O (e3), (24)

D
0
"

L
L¹

0

, D
1
"

L
L¹

1

, D
2
"

L
L¹

2

, (25)

where

L
Lt
"D

0
#eD

1
#e2D

2
#O(e3). (26)

Substitution of equations (17)}(26) into equations (14)}(16) and equating coe$cients of like
O(e), yields the ordered equations

D2
0
u
0
!

1

j2
L2u

0
Lx2

"0, D2
0
v
0
!

1

r2j2
L2v

0
Lx2

"0, (27,28)

D2
0
w

0
!

1

r2j2
L2w

0
Lx2

"0, (29)

at O(e0) and

j2r2u2
t
D2

0
u
1
!r2u2

t

L2u
1

Lx2
"

a
1
p

2
[e*T0#cc]dAx!

1

2B!b
1
g

![(p
1
#j2p

r
u2

t
)D2

0
#c

11
D

0
#2j2r2u2

t
D

0
D

1
]u

0

#C(2a
2
#2) (r2!1)u2

t

Lu
0

Lx

L2u
0

Lx2 D#(C
1
D

0
#p

r
u2

t
)
L2u

0
Lx2

#(r2!1)u2
t C

Lv
0

Lx

L2v
0

Lx2
#

Lw
0

Lx

L2w
0

Lx2 D, (30)
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j2r2u2
t
D2

0
v
1
!u2

t

L2v
1

Lx2
"

a
2
p

2
[e*T0#cc]dAx!

1

2B!b
2
g

![(p
1
#j2p

r
u2

t
)D2

0
#c

21
D

0
#2j2r2u2

t
D

0
D

1
]v

0

# (r2!1)u2
t C

Lu
0

Lx

L2v
0

Lx2
#

Lv
0

Lx

L2u
0

Lx2 D, (31)

j2r2u2
t
D2

0
w
1
!u2

t

L2w
1

Lx2
"[(p

1
#j2p

r
u2

t
)D2

0
#c

31
D

0
#2j2r2u2

t
D

0
D

1
]w

0

#(r2!1)u2
t C

Lu
0

Lx

L2w
0

Lx2
#

Lw
0

Lx

L2u
0

Lx2 D, (32)

at O(e1). The O(e2) equations are given in Appendix A. The corresponding boundary
conditions for each order are determined from equation (4) and equations (21)}(24),

u
0
(0,¹

0
,¹

1
,¹

2
)"u

0
(1,¹

0
,¹

1
,¹

2
)"2"u

2
(1,2)"0,

v
0
(0,¹

0
,¹

1
,¹

2
)"v

0
(1,¹

0
,¹

1
,¹

2
)"2"v

2
(1,2)"0,

w
0
(0,¹

0
,¹

1
,¹

2
)"w

0
(1,¹

0
,¹

1
,¹

2
)"2"w

2
(1,2)"0. (33)

The general solutions to the linear e0 equations (27)}(29) satisfying the homogeneous
boundary conditions contained in equation (33) are given by

u
0
"

=
+

m/1

(A
1m

e*(mn@j)T0#cc) sinmnx, (34)

v
0
"

=
+

m/1

(A
2m

e*(mn@rj)T0#cc) sin mnx, (35)

w
0
"

=
+

m/1

(A
3m

e*(mn@rj)T0#cc) sinmnx, (36)

where cc denotes the complex conjugate of the preceding terms and information about the
modal amplitudes A

im
"A

im
(¹

1
,¹

2
) is to be determined at the next e-order. These solutions

are now used to update the O(e1) equations.
Since the homogeneous parts of equations (30)}(32) each have a non-trivial solution

satisfying the homogeneous boundary conditions (33), solvability conditions must be
imposed on the inhomogeneities in order to insure the existence of solutions. Speci"cally,
secular terms must be eliminated. Since the string's sti!ness operators are self-adjoint and
the boundary conditions are homogeneous, secular terms are identi"ed as those terms
which have both temporal frequency equal to an eigenfrequency and a non-zero projection
on to the corresponding spatial eigenfunction.

For the u
1

equation (30), elimination of secular terms begins by isolating all terms in the
inhomogeneity with temporal dependence e*(ln@j)T0:

a
1
p

2
dA

ln
j
!1BdAx!

1

2B!C!p
1A

ln
j B

2
#iA

ln
j

c
11
#(ln)2

ln
j

C
1B!i2jlnr2u2

t
D

1DA
1l

sin lnx

!(2a
2
#2)(r2!1)u2

t

=
+
n/1

[(l!n)n2n3A
1(l~n)

A
1n

cos (l!n)nx sin nnx
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#(l#n)n2n3A
1(l`n)

AM
1n

cos (l#n)nx sin nnx

#(n!l)n2n3AM
1(n~l)

A
1n

cos (n!l)nx sin nnx]

!(r2!1)u2
t

+
K/2,3

=
+
n/1

[(rl!n)n2n3A
K(rl~n)

A
Kn

cos (rl!n)nx sin nnx

#(rl#n)n2n3A
K(rl`n)

AM
Kn

cos (rl#n)nx sin nnx

#(n!rl)n2n3AM
K(n~rl)

A
Kn

cos (n!rl)nx sin nnx]. (37)

The "nal step in identifying the secular terms is to set the inner product of equation (37) with
sin lnx to zero, yielding the solvability condition:

a
1
pdA

ln
j
!1B sin

ln
2
!C!p

1A
ln
j B

2
#i

ln
j

(c
11
#(ln)2C

1
#2j2r2u2

t
D

1
)DA

1l

!(a
2
#1)(r2!1)u2

t

=
+
n/1

(nl2#n2l)n3A
1(l`n)

AM
1n
#

l~1
+
n/1

(l!n)n2n3A
1(l~n)

A
1n

!

(r2!1)2u2
t

8
n3 [A

2(r~1
2 l)

A
2(r`1

2 l)
#A

3(r~1
2 l)

A
3(r`1

2 l)
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A similar procedure is followed to determine the secular terms in equations (31)}(32), with
the resulting solvability conditions given by
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4. INTERNAL RESONANCE MECHANISMS

4.1. QUADRATIC

An inspection of equations (38)}(40) reveals many possible internal resonance
mechanisms exhibited by quadratic coupling terms. These will be referred to as
quadratically induced resonance mechanisms. First, when the ratio of the longitudinal
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natural frequency to the transverse natural frequency is odd (i.e., r odd), resonant
interactions can occur between the ¸th longitudinal mode and two transverse modes, the
(((r#1)/2)¸)th and the (((r!1)/2)¸)th. When r is even, the same interactions can occur,
except with even numbered ¸th longitudinal modes only. These interactions occur in each
secular equation (see the "nal terms in each of equations (38)}(40)), and are thus fully
coupled. It is also observed that in-plane and out-of-plane transverse modes are not directly
coupled at quadratic order, and quadratically initiated whirling motions, to this order, can
only occur if longitudinal modes are excited. Finally, it is noted (but not shown here) that
these same modal combinations involved in quadratically induced resonance mechanisms
are also involved in cubically induced resonance mechanisms at the next e order, including
directly coupled whirling motions, which should serve to reinforce their e!ect. An analysis
to O(e2) has been completed, but not "xed points of the autonomous evolution equations
were found corresponding to the internal resonance mechanism. In the physical system, this
indicates that periodic solutions will not arise in which excitation of either the
(((r#1)/2)¸)th or the (((r!1)/2)¸)th transverse mode leads to response in the ¸th
longitudinal mode, or vice versa. The quadratic mechanisms will not be discussed further,
and instead, the remainder of this study will focus on cubically induced internal resonance
mechanisms.

4.2. CUBIC

The spatial and temporal frequency content of the cubic coupling expressions is
examined next and the secular terms arising at O(e2) are determined. Cubically induced
internal resonance mechanisms between a single longitudinal mode and a single transverse
mode are likely due to the expressions L/Lx(Lu

0
/Lx(Lv

0
/Lx)2) (in the longitudinal O(e2)

equation) and L/Lx(Lv
0
/Lx(Lu

0
/Lx)2), L/Lx(Lw

0
/Lx(Lu

0
/Lx)2) (in the transverse O(e2)

equations). Speci"cally, these expressions lead to secular terms between the mth transverse
mode and the nth longitudinal mode whenever m"nr. For example, the O(e2) longitudinal
expression leads to the secular term

!

(nn)4r2

2
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1n
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2nr
e*(nn@j)T0 sin nnx, (41)

while the in-plane and out-of-plane transverse expressions lead to the secular terms
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1n
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respectively. Similar to the quadratic mechanisms identi"ed, the cubic mechanisms are fully
coupled.

To study the cubic interactions at a "nite state size, a modal truncation is introduced.
Longitudinal and transverse modes which are either not directly excited nor involved in an
internal resonance are likely to be of negligible importance. Here, we choose to consider
direct forcing of the (rN)th in-plane transverse mode such that a

2
O0 and j"Nn. With this

choice, only the Nth longitudinal and the (rN)th transverse modes are retained in equations
(34)}(36) and equations (38)}(40) for the remainder of the analysis.
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Following introduction of the modal truncation into the multiple scales analysis, the
particular solutions to equations (30)}(32) are found before addressing the O (e2) equations.
The u

1
particular solution satis"es both the inhomogeneities remaining after subtraction of

equation (37) from equation (30) (similarly for v
1
, w

1
particular solutions) and the

inhomogeneities resulting from terms in equation (37) orthogonal to the spatial
eigenfunction sinNnx (sinNrnx for analogous v

1
,w

1
equations). With these considerations,

the particular solutions for the u
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, and w
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equations are denoted as the complex
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Note that non-resonant longitudinal motions can be captured by setting A
1N

to zero and
retaining only the particular solution for the longitudinal equation (44). This limiting case
reveals that longitudinal motions are proportional to A2

2rN
and A2

3rN
, and thus occur at twice

the spatial and temporal frequency of the excited transverse mode, as proposed by
Narasimha [1].

The procedure for eliminating secular terms in the O(e2) equations follows closely that of
the O(e1) equations. Speci"cally, the approach adopted is that of Lee and Perkins [9] in
which the particular solutions are substituted into the O(e2) equations, O(e1) derivatives (D

1
)

are set to zero, and expressions for the O (e2) derivative (D
2
) of the modal amplitudes are

obtained. This is one of several approaches currently existing in the literature; see reference
[14] for a discussion. Appendix B lists the O (e2) solvability conditions and describes the
reconstitution procedure invoked to determine the evolution equations.

The reconstitution procedure of Appendix B yields the autonomous evolution equations
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where p("ep and p(
r
"ep

r
are small quantities.
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5. RESULTS

The evolution equations of section 4.2 are analyzed in this section to determine
equilibrium, periodic, and aperiodic solutions (and the stability of each) for example strings
with a frequency ratio of r(+3. For these strings, excitation of the third transverse mode
may lead to resonant longitudinal motions at the "rst mode. This mechanism is studied by
setting r"3 and N"1 in equations (47)}(49) and decomposing the complex modal
amplitudes into their real and imaginary Cartesian components. The discussion of the
results is limited primarily to internally resonant solutions (A

1N
O0), although the simple

planar (A
1N

"A
3rN

"0) and simple whirling (A
1N

"0; A
2rN

, A
3rN

O0) solutions will be
presented in some "gures. These solutions are not discussed in detail here because they have
been treated exhaustively in the studies cited in the introduction, and the present analysis
reproduces their solutions with the same topological character. Fixed point solutions to the
evolution equations are found by locating solution branches at various values of detuning
p( (through initial guesses and subsequent iteration with a Newton}Raphson solver), and
then following the branch with the aid of a continuation method [15], which also
determines stability automatically using a local eigenvalue analysis. Periodic and aperiodic
solutions to the evolution equations are found through numerical simulation [16].

5.1. FIXED POINT SOLUTIONS FOR EVOLUTION EQUATIONS

Depending on the strength of the material non-linearities, the stability and existence of
the internally resonant solutions may be greatly in#uenced. Figure 2 presents frequency
response curves (energy versus detuning) for two strings with di!erent degrees of material
non-linearity. Only "xed point solutions to the evolution equations (periodic solutions in
the physical system) and their stability are shown in the "gure. In the top two sub-"gures,
the string is characterized with non-zero linear material properties only, while the bottom
two sub-"gures correspond to a string characterized by a

2
"4 and a

3
"6. These two

examples are discussed at "xed levels of damping and modal detuning p(
r

(given in the
caption of Figure 2) to illustrate the dominant character of possible solutions, but it should
be noted that other choices for a

2
, a

3
lead to further variation on the solutions, although to

a lesser degree.
For the string characterized with a linear material description, several di!erent "xed

point solution branches exist, which correspond to a variety of string motions. Branches
labelled B1}B4 in Figure 2 are summarized in Table B1 and are characterized according
to their modal content. Branches involved in the internal resonance are those with
a description preceded by composite and include planar and whirling solutions. These
composite branches behave in a softening fashion, as witnessed by their bending towards
decreasing p( . For the linear material, each composite branch is unstable, and in fact, their
existence causes the planar branch B1 to also be unstable in the region
!0)897(p((0)446. This is in contrast to a string without resonantly excited longitudinal
motions, where the planar solution would be stable in this same region. Hopf bifurcations,
labelled H1}H6 in the "gure, of which H3}H6 appear on the composite branches, are also
found which locate detuning values at which limit cycles in the evolution equations appear.
Local to H1,H2,H3, and H6, stable limit cycles exist, while local to H4 and H6, unstable
limit cycles exist. More discussion on these and other non-equilibrium solutions follow
below.

The "xed-point behavior of the example non-linear material string is topologically
di!erent from that of the linear material string. The same composite branches described
above still exist, but now act in a (weakly) hardening manner, with their bifurcation



Figure 2. Fixed point solutions of the evolution equations used to generate modal energy versus detuning
bifurcation diagrams for: (a)}(b) a

2
"a

3
"0, and (c)}(d) a

2
"4, a

3
"6. Here r"3, N"1, p(

r
"0)01, u

t
"1)0,

p/(oTAT¸2)"0)01, and damping C, c
1
, c

2
, and c

3
are chosen to correspond to 0)11 per cent critical damping in the

longitudinal direction and 0)27 per cent critical damping in the transverse directions. Local stability is indicated by
line type: *, indicating stable solutions; - - - -, indicating unstable solutions.
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locations away from the branch of simple planar solutions shifted in the direction of positive
p( . This shift causes a portion of the composite branches to coexist with part of the simple
whirling branch, and destabilizes the overlapping portion of this branch. As in the linear
material case, the segment of the simple planar branch coincident with the composite
branches is unstable as well. Unlike the linear material, the B3 and B4 composite branches
exhibit p( -regions of stability, with the B3 branch losing stability at the B3}B4 bifurcation
point. A further di!erence between the two examples is that no Hopf bifurcations exist on
the composite branches of the non-linear material.

5.2. PERIODIC AND APERIODIC SOLUTIONS FOR EVOLUTION EQUATIONS

For the linear material string, the region !0)897(p((0)446 is devoid of stable "xed
points, suggesting an increased likelihood of "nding stable periodic and aperiodic solutions
here. Numerical simulation of the evolution equations in the neighborhood of this region



Figure 3. Bifurcation diagrams of DDA
1N

DD/¸ (at the PoincareH section ReMA
2rN

N"0) versus detuning for the
a
2
"a

3
"0 system de"ned in the caption of Figure 2. Sub-"gures (b)}(c) provide an increasingly detailed view of

the bifurcation structure in the sub-region !0)45(p((!0)35 of sub-"gure (a).
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does in fact reveal the existence of complex dynamics. At approximately p("1)11, a periodic
composite whirling solution to the evolution equations (quasiperiodic in physical space) is
"rst detected. Figure 3 presents bifurcation diagrams which record the evolution of this
periodic solution as detuning p( is increased. The diagrams are generated by sampling the
numerically calculated #ow as it passes through the PoincareH section ReMA

2rN
N"0, and

recording the magnitude of A
1N

. The initial periodic solution appears as a single point at
p("1)11 in sub-"gure (a). As p( is increased, this periodic solution persists until
approximately p("1)024, at which point the period of the solution doubles and two points
are recorded on the PoincareH section. A series of period bifurcations follows as p( is further
increased, as shown in the sub-"gure, leading to regions of complex dynamics interrupted
by windows of periodic dynamics. For example, sub-"gures (b)}(c) provide an increasingly
detailed view of the region !0)45(p((!0)35, in which a periodic solution under-
goes a period doubling sequence of bifurcations leading to aperiodic (likely chaotic)
solutions.

Figure 4 provides phase planes and frequency decompositions of A
1N

at a representative
values of p( in each of the "rst four period-doubled regions of Figure 3, with a "nal phase
plane and frequency decomposition of A

1N
at a value of p( corresponding to aperiodic #ow.

The period doubling progression is clearly illustrated as a doubling of the trajectories in the



Figure 4. Phase planes representing DDAQ
1N

DD/¸ versus DDA
1N

DD/¸ and corresponding power spectrum of DDA
1N

DD/¸ for
the a

2
"a

3
"0 system (de"ned in the caption of Figure 2) for detuning values (a) p("0)45, (b) p("0)40, (c)

p("0)385, (d) p("0)38, and (e) p("0)362. 500 periods shown in each sub-"gure.
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phase planes, and as additional peaks in the frequency domain corresponding to 1
2
, 1
4
, 1
8
,2

of the dominant initial frequency. Eventually, after an accumulation of period doublings,
the #ow appears aperiodic and exhibits broadband frequency content and a densely layered
orbit, with no overlap after 500 periods (the resolution of the "gure).
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The description of the p( -region above is further complicated by additional limit cycles
and multiple solutions, which appear to be strongly dependent on the non-linear material
properties. For example, the sequence of periodic and aperiodic solutions described in
Figure 3 ends at approximately p("0)21, at which point a new periodic solution (not
shown) emerges. This new limit cycle has a period equal to approximately half that of the
previous limit cycle, and experiences two bifurcations as p( is increased in which the period
increases by 1)5 at each occurrence, before "nally transitioning into the stable Hopf (H3)
limit cycle. Furthermore, a second stable limit cycle can be found at p("0)38, resulting in
two stable limit cycles to the evolution equations in the neighborhood of p("0)38.
Alternatively, simulations for the example non-linear material did not reveal limit cycles in
the analogous p( -regions, and thus the number and variety of periodic and aperiodic
solutions can be expected to be highly dependent on the non-linear material properties.

6. CLOSING REMARKS

In this study, internal resonance mechanisms between near-commensurate longitudinal
and transverse modes of a taut spatial string have been identi"ed. In particular, the example
of a cubically induced internal resonance between the "rst longitudinal mode and the third
transverse mode of an example string has been explored in detail. The example illustrates
that large longitudinal motions can occur in the proximity of a transverse resonance when
commensurability is approached. These motions arise as periodic, quasi-periodic, and
aperiodic (likely chaotic) response to harmonic forcing.

New branches of periodic response have been identi"ed which include in-plane transverse
motions coupled to longitudinal motions, and whirling motions coupled to longitudinal
motions. The existence of these new branches acts as a destabilizing e!ect on the previously
documented, longitudinally non-resonant, in-plane and whirling solutions. The stability of
the new branches, as well as their softening}hardening nature, has been shown to be
dependent on the non-linear material characterization.

Complex dynamics have been documented in regions of detuning in which no stable
periodic solutions exist. In particular, stable quasi-periodic response and period doubling
tori (corresponding to periodic response and period doubling sequences in the evolution
equations) have been identi"ed, with the latter culminating in densely layered orbits in the
state space and aperiodic, likely chaotic, response.
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APPENDIX A: O (e2) GOVERNING EQUATIONS

The O(e2) governing equations are
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APPENDIX B. PROCEDURE OF DETERMINING AUTONOMOUS EVOLUTION
EQUATIONS

This appendix provides the procedure for determining the autonomous evolution
equations from the O(e1) and O(e2) solvability conditions.

The O(e2) solvability conditions are determined to be
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The quantities A
1N

, A
2rN

, A
3rN

, p, c
i
, C, t in equations (B.1)}(B.3) are dimensionless

quantities which were previously denoted with a *. Here, we return to this notation and



TABLE B1

Description of branches appearing in Figure 2

Branch Description Modal content

B1 Simple planar A
1N

"A
3rN

"0, A
2rN

O0
B2 Simple whirling A

1N
"0, A

2rN
O0, A

3rN
O0

B3 Composite planar A
1N

O0, A
2rN

O0, A
3rN

O0
B4 Composite whirling A

1N
O0, A

2rN
O0, A

3rN
O0
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perform a reconstitution step,
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, (B.4)

where the dimensionless quantities are related to dimensional quantities through the
relationships

A
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"e¸A*

ij
,

d

dt
"X

d

dt*
, e2p*"

p

oTAT¸2
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, (B.5)

e2C*A*
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"

XC

oT¸3
A

1N
, e3A*3
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"

A3
ij

¸3
. (B.6)

Substitution of equations (B.5) and (B.6) into equation (B.4) yields the evolution equations
(47)}(49).
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